Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Blood Adv ; 6(24): 6198-6207, 2022 12 27.
Article in English | MEDLINE | ID: covidwho-2070704

ABSTRACT

Patients with multiple myeloma (MM) have a diminished immune response to coronavirus disease 2019 (COVID-19) vaccines. Risk factors for an impaired immune response are yet to be determined. We aimed to summarize the COVID-19 vaccine immunogenicity and to identify factors that influence the humoral immune response in patients with MM. Two reviewers independently conducted a literature search in MEDLINE, Embase, ISI Web of Science, Cochrane library, and Clinicaltrials.gov from existence until 24 May 24 2022. (PROSPERO: CRD42021277005). A total of 15 studies were included in the systematic review and 5 were included in the meta-analysis. The average rate (range) of positive functional T-lymphocyte response was 44.2% (34.2%-48.5%) after 2 doses of messenger RNA (mRNA) COVID-19 vaccines. The average antispike antibody response rates (range) were 42.7% (20.8%-88.5%) and 78.2% (55.8%-94.2%) after 1 and 2 doses of mRNA COVID-19 vaccines, respectively. The average neutralizing antibody response rates (range) were 25% (1 study) and 62.7% (53.3%-68.6%) after 1 and 2 doses of mRNA COVID-19 vaccines, respectively. Patients with high-risk cytogenetics or receiving anti-CD38 therapy were less likely to have a humoral immune response with pooled odds ratios of 0.36 (95% confidence interval [95% CI], 0.18, 0.69), I2 = 0% and 0.42 (95% CI, 0.22, 0.79), I2 = 14%, respectively. Patients who were not on active MM treatment were more likely to respond with pooled odds ratio of 2.42 (95% CI, 1.10, 5.33), I2 = 7%. Patients with MM had low rates of humoral and cellular immune responses to the mRNA COVID-19 vaccines. Further studies are needed to determine the optimal doses of vaccines and evaluate the use of monoclonal antibodies for pre-exposure prophylaxis in this population.


Subject(s)
COVID-19 , Multiple Myeloma , Humans , COVID-19 Vaccines/therapeutic use , COVID-19/prevention & control , SARS-CoV-2 , Antibodies, Monoclonal
2.
J Microbiol Immunol Infect ; 2022 Sep 29.
Article in English | MEDLINE | ID: covidwho-2061573

ABSTRACT

BACKGROUNDS: SARS-CoV-2 infection results in a broad spectrum of clinical outcomes, ranging from asymptomatic to severe symptoms and death. Most COVID-19 pathogenesis is associated with hyperinflammatory conditions driven primarily by myeloid cell lineages. The long-term effects of SARS-CoV-2 infection post recovery include various symptoms. METHODS: We performed a longitudinal study of the innate immune profiles 1 and 3 months after recovery in the Thai cohort by comparing patients with mild, moderate, and severe clinical symptoms using peripheral blood mononuclear cells (n = 62). RESULTS: Significant increases in the frequencies of monocytes compared to controls and NK cells compared to mild and moderate patients were observed in severe patients 1-3 months post recovery. Increased polymorphonuclear myeloid-derived suppressor cells (PMN-MDSCs) were observed in all recovered patients, even after 3 months. Increased IL-6 and TNFα levels in monocytes were observed 1 month after recovery in response to lipopolysaccharide (LPS) stimulation, while decreased CD86 and HLA-DR levels were observed regardless of stimulation. A multiplex analysis of serum cytokines performed at 1 month revealed that most innate cytokines, except for TNFα, IL4/IL-13 (Th2) and IFNγ (Th1), were elevated in recovered patients in a severity-dependent manner. Finally, the myelopoiesis cytokines G-CSF and GM-CSF were higher in all patient groups. Increased monocytes and IL-6- and TNFα-producing cells were significantly associated with long COVID-19 symptoms. CONCLUSIONS: These results reveal that COVID-19 infection influences the frequencies and functions of innate immune cells for up to 3 months after recovery, which may potentially lead to some of the long COVID symptoms.

3.
Journal of microbiology, immunology, and infection = Wei mian yu gan ran za zhi ; 2022.
Article in English | EuropePMC | ID: covidwho-2046593

ABSTRACT

Backgrounds SARS-CoV-2 infection results in a broad spectrum of clinical outcomes, ranging from asymptomatic to severe symptoms and death. Most COVID-19 pathogenesis is associated with hyperinflammatory conditions driven primarily by myeloid cell lineages. The long-term effects of SARS-CoV-2 infection post recovery include various symptoms. Methods We performed a longitudinal study of the innate immune profiles 1 and 3 months after recovery in the Thai cohort by comparing patients with mild, moderate, and severe clinical symptoms using peripheral blood mononuclear cells (n=62). Results Significant increases in the frequencies of monocytes compared to controls and NK cells compared to mild and moderate patients were observed in severe patients 1-3 months post recovery. Increased polymorphonuclear myeloid-derived suppressor cells (PMN-MDSCs) were observed in all recovered patients, even after 3 months. Increased IL-6 and TNFα levels in monocytes were observed 1 month after recovery in response to lipopolysaccharide (LPS) stimulation, while decreased CD86 and HLA-DR levels were observed regardless of stimulation. A multiplex analysis of serum cytokines performed at 1 month revealed that most innate cytokines, except for TNFα, IL4/IL-13 (Th2) and IFNγ (Th1), were elevated in recovered patients in a severity-dependent manner. Finally, the myelopoiesis cytokines G-CSF and GM-CSF were higher in all patient groups. Increased monocytes and IL-6- and TNFα-producing cells were significantly associated with long COVID-19 symptoms. Conclusions These results reveal that COVID-19 infection influences the frequencies and functions of innate immune cells for up to 3 months after recovery, which may potentially lead to some of the long COVID symptoms.

4.
Vaccine ; 40(24): 3320-3329, 2022 05 26.
Article in English | MEDLINE | ID: covidwho-1815246

ABSTRACT

BACKGROUND: Currently, booster dose is needed after 2 doses of non-live COVID-19 vaccine. With limited resources and shortage of COVID-19 vaccines, intradermal(ID) administration might be a potential dose-sparing strategy. OBJECTIVE: To determine immunologic response and reactogenicity of ID ChAdOx1 nCoV-19 vaccine (AZD1222,Oxford/AstraZeneca) as a booster dose after completion of 2-dose CoronaVac(SV) in healthy adult. METHODS: This is a prospective cohort study of adult aged 18-59 years who received 2-dose SV at 14-35 days apart for more than 2 months. Participants received ID AZD1222 at fractional low dose(1×1010 viral particles,0.1 ml). Antibody responses were evaluated by surrogate virus neutralization test(sVNT) against delta variant and wild type, and anti-spike-receptor-binding-domain immunoglobulin G(anti-S-RBD IgG) at prior, day14, 28, 90, and 180 post booster. Solicited reactogenicity was collected for 7 days post-booster. Primary endpoint was the differences of sVNT against delta strain ≥ 80% inhibition at day14 and 90 compared with the parallel cohort study of 0.5-ml intramuscular(IM) route. RESULTS: From August2021, 100 adults with median age of 46 years(IQR 41-52) participated. Prior to booster, geometric mean(GM) of sVNT against delta strain was 22.4% inhibition(95 %CI 18.7-26.9) and of anti-S-RBD IgG was 109.3 BAU/ml(95.4-125.1). Post ID booster, GMs of sVNT against delta strain were 95.5% inhibition (95%CI 94.2-96.8) at day14, 73.1% inhibition (66.7-80.2) at day90, and 22.7% inhibition (14.9-34.6) at day180. The differences of proportion of participants achieving sVNT against delta strain ≥ 80% inhibition in ID recipients versus IM were + 4.2% (95 %CI -2.0to10.5) at day14, and -37.3%(-54.2to-20.3) at day90. Anti-S-RBD IgG GMs were 2037.1 BAU/ml (95%CI 1770.9-2343.2) at day14 and 744.6 BAU/ml(650.1-852.9) at day90, respectively. Geometric mean ratios(GMRs) of anti-S-RBD IgG were 0.99(0.83-1.20) at day14, and 0.82(0.66-1.02) at day90. Only 18% reported feverish, compared with 37% of IM (p = 0.003). Common reactogenicity was erythema at injection site(53%) while 7% reported blister. CONCLUSION: Low-dose ID AZD1222 booster enhanced lower neutralizing antibodies at 3 months compared with IM route. Less systemic reactogenicity occurred, but higher local reactogenicity.


Subject(s)
COVID-19 Vaccines , COVID-19 , ChAdOx1 nCoV-19 , Immunogenicity, Vaccine , Adult , Antibodies, Viral , COVID-19/prevention & control , COVID-19 Vaccines/immunology , ChAdOx1 nCoV-19/immunology , Humans , Immunization, Secondary , Immunoglobulin G , Injections, Intramuscular , Middle Aged , Prospective Studies , SARS-CoV-2
5.
JAMA Netw Open ; 5(4): e226822, 2022 04 01.
Article in English | MEDLINE | ID: covidwho-1782543

ABSTRACT

Importance: Recipients of solid organ transplant (SOT) experience decreased immunogenicity after COVID-19 vaccination. Objective: To summarize current evidence on vaccine responses and identify risk factors for diminished humoral immune response in recipients of SOT. Data Sources: A literature search was conducted from existence of database through December 15, 2021, using MEDLINE, Embase, Web of Science, Cochrane Library, and ClinicalTrials.gov. Study Selection: Studies reporting humoral immune response of the COVID-19 vaccines in recipients of SOT were reviewed. Data Extraction and Synthesis: Two reviewers independently extracted data from each eligible study. Descriptive statistics and a random-effects model were used. This report was prepared following the Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) reporting guideline. Data were analyzed from December 2021 to February 2022. Main Outcomes and Measures: The total numbers of positive immune responses and percentage across each vaccine platform were recorded. Pooled odds ratios (pORs) with 95% CIs were used to calculate the pooled effect estimates of risk factors for poor antibody response. Results: A total of 83 studies were included for the systematic review, and 29 studies were included in the meta-analysis, representing 11 713 recipients of SOT. The weighted mean (range) of total positive humoral response for antispike antibodies after receipt of mRNA COVID-19 vaccine was 10.4% (0%-37.9%) for 1 dose, 44.9% (0%-79.1%) for 2 doses, and 63.1% (49.1%-69.1%) for 3 doses. In 2 studies, 50% of recipients of SOT with no or minimal antibody response after 3 doses of mRNA COVID-19 vaccine mounted an antibody response after a fourth dose. Among the factors associated with poor antibody response were older age (mean [SE] age difference between responders and nonresponders, 3.94 [1.1] years), deceased donor status (pOR, 0.66 [95% CI, 0.53-0.83]; I2 = 0%), antimetabolite use (pOR, 0.21 [95% CI, 0.14-0.29]; I2 = 70%), recent rituximab exposure (pOR, 0.21 [95% CI, 0.07-0.61]; I2 = 0%), and recent antithymocyte globulin exposure (pOR, 0.32 [95% CI, 0.15-0.71]; I2 = 0%). Conclusions and Relevance: In this systematic review and meta-analysis, the rates of positive antibody response in solid organ transplant recipients remained low despite multiple doses of mRNA vaccines. These findings suggest that more efforts are needed to modulate the risk factors associated with reduced humoral responses and to study monoclonal antibody prophylaxis among recipients of SOT who are at high risk of diminished humoral response.


Subject(s)
COVID-19 , Organ Transplantation , COVID-19/prevention & control , COVID-19 Vaccines , Child, Preschool , Humans , Immunity, Humoral , RNA, Messenger , Risk Factors , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL